
Genetic Algorithms and their Use in the Design of Evolvable

Hardware.

Abhishek Joglekar, Manas Tungare
abhij21@hotmail.com, manas@manastungare.com

3 April, 2000.

Abstract

Genetic Algorithms are an important area of Evolutionary Computing, which is a rapidly growing area
of Artificial Intelligence. They are a class of algorithms which mimic the natural process of Evolution and
Darwin’s principle of Survival of the Fittest – in this case, it refers to the acceptance of the best solution,
generated from previous solutions by the use of genetic operators such as crossover and mutation. The
next section takes a more detailed look at the background of GAs and outlines the basic concepts in its
computer model. Genetic Algorithm as in the case of Darwinian model of evolution relies heavily on
random experiments of reproduction. From where does this apparently simple model of problem-solving
derive its power? This has been a topic of intense research work, covered in the next section. Section
3 of this paper discusses design of evolvable hardware (EHW), which is a promising approach towards
autonomous and on-line reconfigurable machines capable of adapting to real-world problems.

1 Introduction

1.1 Genetic Algorithms

The buzzword doing the beats at all hierarchical levels of the industry today is optimization. Calculus had
been the reigning emperor of optimization techniques, until recently. One such optimization technique
which mimics the natural process of evolution is Evolutionary Computing. Impressed by Charles Darwin,
Prof. John Holland of the University of Michigan viewed the process of Biological Evolution as a process of
optimization, where nature selects the best genetic settings to survive in the next generation of offspring.
These offspring are then optimized further to give successively better offspring. A Genetic Algorithm
similarly selects the most optimal solutions from a set, and uses the genetic operators of Crossover
and Mutation to generate further solutions. Each such solution is ‘more’ optimal than its predecessors.
An important feature of biological evolution is robustness – which is what genetic algorithms strive to
achieve.

1.2 Evolvable Hardware

Now, moving to the domain of the application of Genetic Algorithms, Configurable Hardware is an
approach for realizing optimal performance by tailoring its architecture to the characteristics of the
given problem. When the characteristics of a problem are known in advance, and they never change
with respect to time, it is relatively easy to build configurable hardware using programmable devices
like FPGAs (Field Programmable Gate Arrays) because the designer knows how the hardware should
be configured. However for problems where designers cannot know in advance how the hardware should
be configured, it is required for configurable hardware to have a capability of autonomous and on-line
adaptation to a given problem.

1

Evolvable Hardware (EHW) is a promising approach towards autonomous and on-line reconfigurable
intelligent machines. The basic idea of EHW is to use Genetic Algorithms (GAs) to find the best
hardware configuration autonomously (without human intervention), on-line (without need to power
down the system, reconfigure and then restart).

2 Development of a Genetic Algorithm

In the words of John Koza, “What we want to use [in GAs] is nature’s method to evolve optimal solutions
without the hindrance of preconceived knowledge.” A GA Search proceeds as follows: Two chromosomes
chosen randomly from the population are mated and they go through genetic operations like Crossover to
yield better chromosomes for the next generation. This is repeated until about a half of the population are
replaced with new chromosomes. Because the population size is fixed, chromosomes with lower fitness
values tend to be eliminated from the population, therefore after several generations of GA search,
relatively high fitness chromosomes remain in the population and some of them are chosen as solutions
to the problem.

The process of developing a GA for a particular application consists of the following chief phases:

SimpleGeneticAlgorithm()

{

Initialize the Population;

Calculate Fitness Function;

While(Fitness Value != Optimal Value)

{

Selection;

Crossover;

Mutation;

Calculate Fitness Function;

}

}

2.1 Initialization

The Algorithm is started with a set of solutions (represented by chromosomes) called population. Each
chromosome represents a possible solution to the problem. The most-used way (though not the only
way) of encoding chromosomes is a binary string.

Chromosome 1 110110|0110
Chromosome 2 011010|0100

2.2 Calculation of Fitness Function

An evaluation function, called fitness function needs to be defined for a problem to be solved in order
to evaluate chromosomes. A chromosome with a high fitness value is likely to be a good solution to the
problem.

2.3 Selection of the Best Individuals

There are many methods for selecting the best chromosome – such as: Roulette Wheel Selection, Boltz-
mann Selection, Tournament Selection, Rank Selection, Steady-State Selection and others.

2

2.4 Crossover

Crossover selects random genes from parent chromosomes and creates a new offspring. Chromosomes
of the two parents are split into two (equal or unequal) halves each. Both the chromosomes are cut
similarly. The halves are interchanged and combined to form the child chromosome.

Chrom. 1 110110|0110
Chrom. 2 011010|0100

After Crossover:
Child 1: 110110|0100
Child 2: 011010|0110

2.5 Mutation and Elitism

Child 1: 110110|0100
Child 2: 011010|0110

After Mutation:
Child 1: 110010|0100
Child 2: 011011|0110

After a crossover is performed, the resulting solution might fall into a local optimum – hence some
genes of the child chromosome are randomly changed. (In Figure, bits are randomly toggled in case of
binary strings.)

However, when creating a new population by crossover and mutation, the best chromosome might
be lost. Hence, Elitism is a method which first copies the best chromosome(s) to the new population.
Elitism rapidly increases the performance of the GA, by preventing loss of the best-found solution.

3 Basic Idea of Evolvable Hardware

The basic idea of Evolvable Hardware (EHW) is to regard the configuration bits of a software-reconfigurable
device as the chromosome of GA. The search-space of configurable bits is very huge, but GAs are very
effective without prior knowledge of the search-space.

As a fitness function, we choose the performance of the hardware circuit. For example, in Data
Compression with EHW, we use a predictive function implemented with hardware. As a fitness function
we choose the data compression rate. When a good chromosome is obtained, it is immediately downloaded
into the reconfigurable device.

In EHW, it is not required to specify the detailed hardware design. Instead we define a fitness function.
A fitness function is the instinct of the circuit to evolve itself. If the fitness value of a hardware circuit is
degraded due to partial malfunction or some changes in the environment, then the GA-process of EHW
is invoked, and the search for a better hardware configuration is initialized. Hence, EHW continues to
reconfigure itself in order to get better performance.

The chromosome of EHW specifies two things. One is the function type of the evolution unit. In figure,
the evolution units correspond to gates like AND-gate and OR-gate. The other is the interconnection
among the evolution units. EHW can be classified into two classes according to the grain-size of an
evolution unit; gate-level and function-level. The figure is an example of gate-level evolution. In function-
level evolution, each evolution unit is higher hardware function than gate-level evolution.

3

GENETIC ALGORITHMS AND EVOLVABLE HARDWARE 8

 010 10 010 01
 100 01 100 10

 Fitness

 0 1 0 1 0 0 1 0 0 1

 1 0 0 0 1 1 0 0 1 0

Population after several generations:

 Fitness

Figure 1: Fitness function of a population

GENETIC ALGORITHMS AND EVOLVABLE HARDWARE 8

 010 10 010 01
 100 01 100 10

 Fitness

 0 1 0 1 0 0 1 0 0 1

 1 0 0 0 1 1 0 0 1 0

Population after several generations:

 Fitness

Figure 2: Fitness function of a population after several generations

4

GENETIC ALGORITHMS AND EVOLVABLE HARDWARE 9

3. Basic Idea of Evolvable Hardware:

The basic idea of Evolvable Hardware (EHW) is to regard the configuration bits of a

software-reconfigurable device as the chromosome of GA. The search-space of

configurable bits is very huge, but GAs are very effective without prior knowledge of the

search-space.

As a fitness function, we choose the performance of the hardware circuit. For example, in

Data Compression with EHW, we use a predictive function implemented with hardware.

As a fitness function we choose the data compression rate. When a good chromosome is

obtained, it is immediately downloaded into the reconfigurable device.

In EHW, it is not required to specify the detailed hardware design. Instead we define a

fitness function. A fitness function is the instinct of the circuit to evolve itself. If the

fitness value of a hardware circuit is degraded due to partial malfunction or some changes

in the environment, then the GA-process of EHW is invoked, and the search for a better

hardware configuration is initialized. Hence, EHW continues to reconfigure itself in order

to get a better performance.

Configuration bit GA Configuration bit
100110100000110001000 100110100000110001101

 Download Download

 evolve

evaluate in the environment evolved circuit

Figure 3: Evolvable Hardware

4 Application of Evolvable Hardware in Neural Networks

Artificial Neural Networks are computational paradigms developed in part because of inspiration by
consideration of processes in biological brains. Artificial Neural Networks can perform many different
functionalities such as unsupervised learning, supervised learning and optimization.

Most of the industrial Neural Networks (NN) applications are limited to Neural Networks with offline
learning, where the learning phase and the execution phase (recognition) are separate. Such a Neural
Network never changes during its execution and therefore lacks the flexibility needed. In order to use
Neural Networks in a broader range of practical applications, they have to be capable of on-line learning.
On-line learning allows neural networks to adapt dynamically to changing problems.

4.1 Ontogenic Neural Networks

The advantage of a neural network is the ability to adapt to the problems by changing interconnection
weights on-line. However it is very difficult for the designer to determine the topology of neural network
(the number of hidden layers and units per layer) in advance. GAs free the designer of this drudgery of
trial-and-error which is inevitable in conventional designing.

Dynamically reconfigurable NN is the key to optimal performance of NNs such the logical NN structure
matches the physical NN hardware structure.

5 Scope and Limitations of Genetic Algorithms in Hard-
ware Design

GAs are no doubt a very promising technique for solving optimization problems with a tradeoff between
speed and perfection. However, not all problems lend themselves very well to a solution with GAs.

In case of problems involving design of electronic circuits consisting of more than 20 components
including resistors, capacitors, inductors, the barrier to applications of the GA technique is that the
possible combinations’ are too vast to search using a conventional genetic algorithm. In the standard
approach, a population of random candidates evolves toward incrementally better solutions. But there
are too many beginning analog circuits from which to choose.

5

The concept of embryonic circuits can be used to bring the analog-circuit-design problem into the
realm of the solvable. Embryonic circuits are very minimal circuits designed with the specific problem in
perspective. A two-component LC circuit, for example, could serve as an embryonic circuit. Using the
embryonic circuit as a starting point, the genetic algorithm operates on it with functions that either add
a circuit component or modify a connection among the existing circuit components.

6 Conclusion

We discussed in this paper, the application of Genetic Algorithms to the problem of developing Evolvable
Hardware. Evolvable Hardware can deal with practical industrial applications, especially those that
require the ability to cope with time-varying problems and real-time constraints.

This paper also explores, though to a limited extent, the fundamentals of genetic algorithms – oper-
ators such as crossover, mutation and elitism, and the process of developing a generic genetic algorithm;
specifically, the formulation of a genetic algorithm for reconfigurable machines. Further, Neural Networks
is an arena where reconfigurable hardware can be used to a great extent; such application of GAs was
presented.

To conclude, Genetic Algorithms is currently a fertile ground for research and application develop-
ment. While a rich set of techniques and models are available, covering a range of domains, there are
many areas remaining to be understood and exploited. It must however be noted, that this technique (as
every other technique!) poses some limitations over the application areas it can be used in, and hence
scope for further development and research in this area is vast.

References

1. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine-Learning, Addison-
Wesley, 1989.

2. M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, T. Higuchi, The GRD
Chip: Genetic Reconfiguration of DSPs for Neural Network Processing, IEEE Transactions on
Computers.

3. D. W. Pearson, N. C. Steele, R. F. Albrecht, Artificial Neural Nets and Genetic Algorithms,
Springer-Verlag Wien.

4. R. Colin Johnson, Genetic program auto-designs analog circuits, EETimes, June 03, 1996, Issue:
904.
http://www.techweb.com/se/directlink.cgi?EET19960603S0059

5. Integrated Systems Group Website: Evolvable Hardware and Genetic Algorithms:
www.ee.ed.ac.uk/˜neural/research/eh.html

6. Marek Obitko, Genetic Algorithms,
http://cs.felk.cvut.cz/˜xobitko/ga/main.html

6

	Introduction
	Genetic Algorithms
	Evolvable Hardware

	Development of a Genetic Algorithm
	Initialization
	Calculation of Fitness Function
	Selection of the Best Individuals
	Crossover
	Mutation and Elitism

	Basic Idea of Evolvable Hardware
	Application of Evolvable Hardware in Neural Networks
	Ontogenic Neural Networks

	Scope and Limitations of Genetic Algorithms in Hardware Design
	Conclusion

