
Syncables: A Framework to Support Seamless Task
Migration Across Multiple Platforms

Manas Tungare, Pardha S. Pyla, Miten Sampat, Manuel A. Pérez-Quiñones
Dept. of Computer Science and Center for Human-Computer Interaction

Virginia Tech, Blacksburg VA USA.

{manas, ppyla, msampat, perez}@vt.edu

ABSTRACT
When users use multiple devices to perform a single task, either
simultaneously or one after the other, there is currently inadequate
support for seamless task migration. We describe the goals, design
and implementation of the Syncables framework that can be used
to migrate task data and state information across platforms. Fea-
tures such as a consistent naming scheme, ability for applications
to define their own arbitrary Syncable types and use of transcoders
and filters would help us develop ‘continuous user interfaces’ that
automatically bridge task disconnects.

Categories and Subject Descriptors
H5.m [Information interfaces and presentation (e.g., HCI)]: Mis-
cellaneous

1. INTRODUCTION AND MOTIVATION
In this age of mobile computing, it is extremely common for

users to perform their tasks using multiple devices such as desktop
computers, laptops, personal digital assistants (PDAs), cell phones,
and others. Two or more of these devices are often used either si-
multaneously or one after the other to perform a single task. How-
ever, migrating a task from one device to another requires stopping
work, transferring current data to the second device, opening and
loading an assortment of applications to complement or replace the
applications being used on the first device, and then restarting work
on the original task. Context information is often lost, and users
must perform additional steps to be able to resume their task where
they left off. We define a‘task disconnect’as ‘the break in conti-
nuity that occurs due to the extra actions outside the task at hand
that are necessary when a user attempts to accomplish a task using
more than one device’.

One of the main issues that contributes to the high cost of task
disconnects is that the by-products of interaction, (i.e., files, notes,
bookmarks, scroll position within a document, etc.) are not auto-
matically made available to the user when resuming a task. In this
paper, we describe the design goals and architecture of a framework
that applications can use to migrate their tasks seamlessly across
devices. The framework also provides features for transcoding data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileHCI ’2006 Espoo, Finland.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

so that it may be readable on a different, less-capable platform, as
well as services to filter data for appropriateness to a particular plat-
form. We present the design goals, architecture, implementation
aspects, and prototype applications that use the Syncables frame-
work to enable seamless migration of application data, files, and
context.

2. RELATED WORK
Barreauet al. [2] in their seminal study on users’ perception

of files and file systems concluded that users do not always think
of their data in terms of a hierarchical structure. Often, the data
need not be associated with a file on disk and could be tempo-
rary. They classify users’ data asephemeral, workingandarchived
data [2]. Ephemeral information has a short shelf life that is usually
“loosely” filed. Working information is frequently-used informa-
tion that is directly relevant to the task at hand. Archived informa-
tion is infrequently-accessed information which usually represents
completed work. Current file systems help manage only archived
data, and it is possible to copy such archived data between plat-
forms by various means (e.g. via disks or USB drives, by sending
it via a network, or by attaching files to an email.)

Being able to transfer files of various encodings [6] over standard
protocols is a problem dealt with in various scenarios. However,
all such approaches deal specifically with files. An approach that
deals with digital library objects rather than files is described in
[9] where document metadata is encoded within an object, so that
it may be used with any digital library collection. However, this
approach does not provide any translation or filtering services and
is not designed for use in a multi-platform context.

Multivalent documents (MVD) [12] extend document ‘behav-
iors’ to allow portability across platforms as well as applications.
However, that work is focused on annotation and portable layers
atop the original document, and the effects of multiple devices were
not explored. Similarly Dushay [5] introduces the concept of using
context brokers as information intermediaries to allow designers to
design different experiences for the same document content. Our
system, in spite of performing such functions, is different in that
it actively addresses seamless task migration. Other works such as
SODA [10], Fedora [11], and CNRI [1] are essentially architectures
and frameworks to allow the extensibility of document behaviors.
The focus of all these works is primarily on portability of content,
and diversity and complexity of rendition across them. None of
these efforts focus on migrating the intra-task context to help miti-
gate the disruptive effects of task disconnects.

3. SEAMLESS TASK MIGRATION ACROSS
MULTIPLE PLATFORMS

Our overarching research objective in this work is to create a
framework that seamlessly migrates a task across different plat-
forms. Migrating a task across platforms entails many dimensions
such as the transfer of data and context, the “manipulation” of data
to suit the target platform, the provision of cues to recover context
on the second platform, etc. In the interest of space, a complete
discussion of all the dimensions in seamless task migration is not
possible here.

4. SCENARIO
To explain the problem with more clarity, we present a scenario:

Amy is a financial advisor who must constantly be aware of the lat-
est information about the technology sector, and be able to make in-
formed decisions on when to sell or buy particular stocks. She mon-
itors financial news on various financial news channels on a televi-
sion at her office, uses a word-processing program and a spread-
sheet on her desktop computer, and specialized software to manage
stock portfolios for her clients. When meeting clients at their lo-
cations (i.e. outside her office), she is forced to transfer manually
all the related documents to her laptop. A mistake can prove very
costly, since the data is time-sensitive. If she intends to continue
working on her task on her laptop, she must note the current po-
sition within the spreadsheet on the desktop, save the document to
a USB drive, and then reopen the document on her laptop. Con-
textual information such as position within the spreadsheet is not
available to her automatically on her laptop with current systems
and methods.

Amy also needs to access news and client portfolios using her
PDA – but she can only do that if she has remembered to synchro-
nize her PDA with her desktop before she left her office. She is
currently unable to view on her PDA any financial reports that have
a graph or chart within them, because the software on her PDA
cannot interpret those items within a document (thus rendering the
entire document unreadable).

With Syncables, Amy no longer needs to explicitly synchronize
her devices before leaving the office. Since the PDA software can-
not view graphs or charts, the reports are automatically converted
to a temporary format without the graphs or charts, so that Amy
can at least read the text matter from them. She also has access to
the last week of activity on her clients’ portfolios via her cellphone
(though not the entire history, since cellphone memory is limited as
compared to desktop or laptop computers.)

5. DESIGN GOALS
The following sections describe the design goals we pursued

when creating the Syncables framework.

5.1 Multiple Information Clusters
We define an‘information cluster’as the set of devices among

which tasks need to be migrated. Thus, a typical information clus-
ter would consist of all the devices owned by a particular user –
home desktop, work desktop, laptop, PDA, cellphone, etc. In order
for seamless task migration, it is not necessary that all data be con-
sistent across all the devices in an information cluster; i.e. perfect
data consistency is not an aim. The differing form factors, storage
capacities and computational capabilities of each device obviously
make this requirement impossible.

An information cluster need not be bound to a user: several users
may elect to form an arbitrary information cluster out of their de-
vices for collaboration purposes. For example, members of a re-
search group may choose to form an information cluster that in-
cludes their laptops for sharing papers they read, or documents they

are working on. Users can define the specific task information from
their devices that should be migrated, thus separating private and
public files and their migration in different information clusters.

5.2 Not Just Files
As Barreauet al. [2] stress, considering a user’s data as consist-

ing of just files is to take a very narrow look at the data. Our goal
was to enable migration of ephemeral, working as well as archived
data. To be able to migrate a unit of data across devices, it need not
be saved to a file first.

5.3 Consistent, Hierarchical Naming
When a unit of data is synchronized among various devices, the

exact location of that data should be device-independent and trans-
parent to the user. In other words, whenever a request is made for
that data by any application, it need not specifically state what de-
vice it is to be fetched from. The other primary motivation for such
a naming scheme is the fact that each operating system or plat-
form has its own conventions for naming archived files and where
they are stored, while there is a conspicuous lack of naming con-
ventions for working data or ephemeral data. With Syncables, our
aim was to name each task information object uniquely across plat-
forms, thus letting applications on different platforms share com-
mon ground about the data they work with.

Although the names assigned to task information in our frame-
work need not be seen or used by users directly, there is value in
maintaining a hierarchical structure in the naming scheme [8]. In-
stead of separate address spaces for filenames, email, bookmarks,
and other task information, a single naming scheme for all infor-
mation items addresses the issue of information fragmentation [7]
and project fragmentation [3].

5.4 Use of Standard Protocols
With various standard protocols available for data transfer, we

wanted to avoid reinventing the wheel, and make use of these pro-
tocols for several reasons. Firstly, standards are well-documented,
thus it helps other developers interested in extending the system.
Secondly, some devices have limited programmability (e.g. some
cellphones), but certain standard protocols (e.g. HTTP) are im-
plemented on those devices. Applications can thus use these pre-
implemented protocols where custom protocols are impossible to
program. Thirdly, it is easier (from an implementation point of
view) to assemble a system from well-tested open-source code that
handles these standard protocols. Finally, using open standards al-
lows for creation of interoperable systems that may each be written
using the language/toolkit that best suits the platform in question.

5.5 Support for Transcoding and Filtering Data
Some data formats may only be interpreted by software that runs

on a specific operating system. In such cases, we aim to preserve
the content of the document and make it accessible on other plat-
forms by the process of transcoding. Transcoders for some com-
mon formats are available as part of the framework, and applica-
tions may define their own.

Filtering is needed when attempting to migrate task information
across platforms with different capacities and architectures. For ex-
ample, a calendar application on a desktop may retain events from
the past several years; however, a calendar application on a device
such as a phone or PDA typically does not need to have the entire
calendar data available. Often, the events for the current week or
current month are sufficient to satisfy the demands of the mobile
user. In such a case, data may be filtered for appropriateness by
means of predefined or application-defined filters.

Voice Mail

PDF to HTML
HT
ML

HTML to TXT

Version Tracker

Recent EventsMulti-Year Calendar
Filter:

April 2006 and Later

The position
of the|cursor
can be
preserved.

Document

Voice Mail

Scroll Position

Document

The position
of the|cursor
can be
preserved.

Filter:
All Unheard Messages

OpenDocument to HTML

Example Filter:
Text Summarizer

Example Transcoder:
Voice to Email

Components within dotted-line boxes are examples available for use,
but not actually used in the four specific instances shown.

Figure 1: The Syncables Framework

5.6 Graceful Degradation of Content Format
On platforms with limited features, it may not be possible to ren-

der content as originally intended. For example, a PDA may lack
the software and computation power needed to display documents
with complex formatting. However, there is some value in being
able to see the content, minus the formatting, even if the full rich-
ness of the document cannot be viewed. Lossy transcoders may be
used for such conversion. Other types of content may also need to
be downgraded to a potentially lossy format.

5.7 Complete Extensibility
The needs of every multi-platform application are different; thus,

a one-size-fits-all solution is seldom appropriate. Including support
for every possible scenario in a closely-coupled framework results
in a code base that has high memory footprint and low adaptability.
Instead, we take a different approach, where the framework pro-
vides a few basic services and the ability for applications to com-
pose them together. Standard filters and transcoders are provided,
and applications may extend the framework by defining their own
synchronizable data types, data filters, and transcoders for various
formats. This also addresses concerns of limited storage space and
memory on portable devices such as PDAs and cellphones.

6. ARCHITECTURE AND IMPLEMENTA-
TION

The following sections describe the architecture of our Synca-
bles system, as shown in figure 1. A prototype of this system has
been developed in Java; although some terminology in the follow-
ing sections may refer specifically to Java, it is generic enough to
be re-implemented in any language.

6.1 Syncable Objects

Any application that wishes to synchronize data must define its
Syncable objects (or use any of the pre-defined ones). A few exam-
ples of Syncable objects would be files, calendar events, email mes-
sages, notes, to-do items, contact information, etc. Not only infor-
mation that is typically stored on a computer, but also information
such as the current television channel, or radio station frequency,
or the list of unheard voice-mail messages can be a syncable object
in our framework.

A syncable object may consist of any application-defined data,
but must expose three properties to the framework. (This is en-
forced in our implementation by having all syncable objects con-
form to theSyncable interface. Each syncable object must be
identified with a unique name, as described in section 6.2. When-
ever data needs to be written to a syncable object, it is written to
anOutputStream exposed by the object. Similarly, data may be
read from the object via anInputStream . The framework does
not try to interpret the resulting stream of bytes in any meaning-
ful way (transcoders and filters do, but the framework itself does
not assign any meaning to these bytes.) These are the only three
necessary properties of any syncable object.

6.2 Naming Scheme
Identification of a syncable object is via a Uniform Resource

Identifier (URI) [4]. Each such syncable is assigned a URI that
consists of four main parts, as illustrated in the example below:

sync:// <info-cluster-id> / <syncable-type> /
<path-defined-by-type> / <object-name>

6.2.1 Information Cluster ID
Each syncable object is migrated within a single information

cluster. (If the same piece of data needs to be migrated among many
information clusters, it will need to have multiple names which all
refer to a (shallow) copy of the data.) An information cluster is
identified by a Globally Unique IDentifier (GUID), a 128-bit num-
ber that is generated by an algorithm that minimizes the chances of
any two of them being the same.

6.2.2 Syncable Type
This is a string that indicates the type of syncable object: it may

be aFile or a Calendar or Note , or a type custom-defined
by an application. This ensures that data of a certain type is not
misinterpreted as another type during task migration.

6.2.3 Path Defined by Type
The Syncables framework does not attempt to assign any mean-

ing to the rest of the path, and the rest of the hierarchical name of
the object is thus entirely defined by an application.

6.2.4 Object Name
The specific object name is also assigned by the type, and the

application treats that part of the URI as completely opaque.

6.2.5 Examples
The first two examples are file paths, while the last two represent

an arbitrary hierarchical structure.
• sync://1D220FFE-B291-58B1-FAA1-C96B7883225C

/File/Documents/Research/MobileHCI/Syncables.tex
• sync://1D220FFE-B291-58B1-FAA1-C96B7883225C

/File/Music/ABBA/Gold/Chiquitita.mp3
• sync://1D220FFE-B291-58B1-FAA1-C96B7883225C

/Calendar/2006/05/01/Meeting-With-Steve
• sync://1D220FFE-B291-58B1-FAA1-C96B7883225C

/Note/Phone-Reminders

6.3 Version Tracking
Each syncable type (not each object) has an associated mecha-

nism for tracking object versions. Versions are expressed simply as
timestamps in ISO 8601 format. This makes them easily sortable,
and the timestamp provides a deterministic way of detecting the lat-
est version. Each syncable object also records the last version that
it was edited from, making it easier to spot situations where two or
more copies of the same object may have been concurrently edited
(without synchronization).

The important issue of out-of-sync clocks between the synchro-
nizing devices is handled by first synchronizing the individual clocks
using the Network Time Protocol (NTP). If a device does not have
internet connectivity, its clock may be synchronized by the other
device involved in the migration. Interestingly, this clock synchro-
nization also occurs usingTime syncable objects.

The version tracker object for each syncable type internally main-
tains version information about objects of its type. The framework
queries the version tracker, for example, for “a list of all objects
modified since 2006-02-04”, to which the version tracker object re-
turns a list of URIs. The application can then decide how it wants
to act on the information thus obtained. It is interesting to note that
there is no centralized store version info, and each syncable type
tracks versions for all objects of its type. This makes it possible
for ephemeral data stores such as clipboard data or scroll-position
context to implement their own mechanism for controlling and no-
tifying the system of updates.

6.4 The Task Migration Process
The power of the Syncables framework is its simplicity: the

framework makes a stream of data available from one device to an-
other and lets applications migrate tasks. In our current implemen-
tation, each device implements a simple HTTP stack, and is able
to transfer data as a stream of bytes. In cases where only a small
part of a large file has undergone changes, it is wasteful of network
bandwidth to transfer the entire file again. In a future implemen-
tation, we plan to use thersync protocol, which optimizes this
transfer by sending only the changed bytes (and some overhead)
over the network. It is crucial to note that the choice of underlying
transport mechanism is independent of our design decision to use
URIs for internal naming of syncable objects.

6.5 Enabling Transcoding and Filtering
We use the HTTP HeaderAccept: to indicate the format in

which the destination requests content. When a request is made
with an Accept: header that is different from the source data
type, the framework locates a transcoder from a registry of avail-
able transcoders, and pipes the content of the outgoing stream through
the transcoder. The output of the transcoder is relayed to the desti-
nation. Since filtering of objects is dependent on the specific type,
the framework relies on the type definition to determine if filtering
should take place, and the parameters for the filter. For example, a
request for calendar items that ends in/2006/05/ might repre-
sent a request to filter calendar events to the month of May 2006.

7. FUTURE WORK

We are currently creating many more Syncable object defini-
tions, such as the ability to capture and relay information about
running applications, documents, and contextual information about
these applications. We intend to evaluate the framework from two
perspectives: users’ perspective and developers’ perspective. In ad-

dition to satisfying our user goals, the framework must also be easy
to use for developers. Since the usefulness of such a tool can only
be gauged by repeated, frequent use in a mobile setting, we plan to
conduct a longer-term field trial by inviting participants to try it for
a significant amount of time. Information gathered from interviews
and data collected from system logs can help us determine whether
the framework represents a significant step towards bridging task
disconnects.

8. CONCLUSION
In this paper, we described the design goals and architecture of

an environment for supporting seamless task migration across mul-
tiple platforms. The Syncables system is designed to work with
multiple types of data that need not necessarily be saved to disk
first, and also allows task information such as scroll position and
other application context to be migrated from one platform to an-
other. Recognizing that multiple platforms are often of varying
form factors, the Syncables architecture allows complete extensi-
bility for applications to create and compose filters and transcoders
according to the needs of the specific application.

9. REFERENCES
[1] W. Y. Arms, C. Blanchi, and E. A. Overly. An architecture

for information in digital libraries.D-Lib Magazine,
February 1997.

[2] D. Barreau and B. A. Nardi. Finding and reminding: file
organization from the desktop.SIGCHI Bull., 27(3):39–43,
1995.

[3] O. Bergman, R. Beyth-Marom, and R. Nachmias. The
project fragmentation problem in personal information
management. InCHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages
271–274, New York, NY, USA, 2006. ACM Press.

[4] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax.
http://www.ietf.org/rfc/rfc2396.txt, August 1998.

[5] N. Dushay. Localizing Experience of Digital Content via
Structural Metadata. InJCDL ’02: Proceedings of the 2nd
ACM/IEEE-CS Joint Conference on Digital Libraries, pages
244–252, New York, NY, USA, 2002. ACM Press.

[6] N. Freed and N. Borenstein. Multipurpose Internet Mail
Extensions (MIME). http://www.ietf.org/rfc/rfc2045.txt,
1996.

[7] W. Jones and H. Bruce. A Report on the NSF-Sponsored
Workshop on Personal Information Management, 2005.

[8] W. Jones, A. J. Phuwanartnurak, R. Gill, and H. Bruce. Don’t
Take My Folders Away!: Organizing Personal Information to
Get Things Done. InCHI ’05: CHI ’05 Extended Abstracts
on Human Factors in Computing Systems, pages 1505–1508,
New York, NY, USA, 2005. ACM Press.

[9] M. L. Nelson and K. Maly. Buckets: Smart objects for digital
libraries.Commun. ACM, 44(5):60–62, 2001.

[10] M. L. Nelson, K. Maly, D. R. C. Jr., and S. W. Robbins.
Metadata and Buckets in the Smart Object, Dumb Archive
(SODA) Model. InThird IEEE Meta-Data Conference, 1999.

[11] S. Payette and C. Lagoze. Flexible and Extensible Digital
Object and Repository Architecture (FEDORA). InSecond
European Conference on Research and Advanced
Technology for Digital Libraries, Heraklion, Crete, 1998.

[12] T. A. Phelps and R. Wilensky. Multivalent documents.
Commun. ACM, 43(6):82–90, 2000.

