
Syncables: A Framework to Support Seamless Data
Migration Across Multiple Platforms

Manas Tungare, Pardha S. Pyla, Miten Sampat, Manuel A. Pérez-Quĩnones
Dept. of Computer Science and Center for Human-Computer Interaction

Virginia Tech, Blacksburg VA USA.
Email: {manas, ppyla, msampat, perez}@vt.edu

Abstract— There is inadequate support for seamless task mi-
gration when users use multiple devices to perform a single task.
In this paper we present the Syncables framework, a software
framework designed to alleviate the problem associated with task
migration. The Syncables framework can be used to migrate
task data and state information across platforms. In the paper
we describe the goals, design and an initial implementation of
Syncables. We highlight features, such as a consistent naming
scheme, ability for applications to define their own arbitrary
Syncable types and use of transcoders and filters. Syncables will
help us develop ‘continuous user interfaces’ that automatically
bridge task disconnects.

I. I NTRODUCTION

We live in an age of mobile computing, and interact,
on a daily basis, with different platforms such as desktop
computers, laptops, personal digital assistants (PDAs), cell
phones, and others. We define an “information cluster” to
be the set of all devices a user interacts with, in the course
of his/her daily tasks. Each of the devices in an information
cluster offers a unique set of affordances in terms of process-
ing capabilities, storage capacities, mobility constraints, user
interface metaphors, and application formats.

Traditionally, design practice and emphasis have always
been on creating systems for a single platform with minimal
consideration to the role each platform plays in the larger
context of the user’s tasks. However, users often perform
the same tasks across multiple platforms. For example, in
our preliminary investigations, we found that users often
use a desktop and a notebook for similar tasks (e.g., word
processing), but they take their work home on a notebook.
Generally, two or more devices are used either simultaneously
or one after the other to perform a single task.

Given that a user’s task is not necessarily constrained to a
particular platform, but that the data, applications, and interac-
tion metaphors are created in isolation for a single platform, a
number of interesting problems such as task disconnects arise.
We discuss this in the next section.

II. M OTIVATION AND PROBLEM STATEMENT

Migrating a task from one device to another requires
stopping work on the first device, transferring current data
to the second device, opening and loading an assortment of
applications to complement or replace the applications being
used on the first device, and then restarting work on the
original task. In this process, users trudge out USB key drives,

remote desktop software, e-mail and network file storage in an
attempt to be able to use multiple devices to accomplish their
task. The end result is that users must perform additional steps
to be able to resume their task in another device.

A. Missing Support For Seamless Data Migration

Software designed for a particular platform does not provide
mechanisms for seamlessly transferring users’ data to other
platforms in a user’s information cluster. This often forces
people to adapt their workflow to try to keep the work products
of an interaction available to themselves on another platform.
Jones, Bruce and Dumais [1] found that people often emailed
the URLs of the websites they visited or the ‘favorites’ list
to themselves when they have the need to access it from a
different location. This approach is often preferred over book-
marking at the browser level, since most bookmarks are tied
to each individual browser. In this example, users of multiple
platforms adapted their workflow to compensate for the lack
of support of task and/or data migration. The available option
(e.g. bookmarking) does not support migration, thus users
included in their workflow emailing their work to themselves.

It is worth noting that this problem is much larger than just
for bookmarks. We have observed that many mobile workers
have opted to use a single computer, their laptop, instead of
moving files back and forth between their office and their
off-site locations. To minimize the disruption, users simply
opt to ‘carry their office with them’ by keeping all of their
data in a single device (laptop) and taking it with them. The
advantages of performance provided by a desktop computer
are thus neglected in favor of ease of use.

B. Task Disconnects

A direct consequence of missing support for data migration
is a task disconnect. We define a‘task disconnect’as ‘the
break in continuity that occurs due to the extra actions outside
the task at hand that are necessary when a user attempts to
accomplish a task using more than one device’[2].

C. Data Formats and Platform Dependence

Currently, most applications are created for a particular
platform with a native file system and format that does not
allow easy migration to a different platform. There is a need
to have a mechanism to free the user’s data from a particular
platform and format and make such details transparent to the

user. However, it should be noted that in order for seamless
data migration, it is not necessary that all data be consistent (at
the byte level) across all the devices in an information cluster.
It is often enough to be able to access the same information
in a different format than the original. The differing form
factors, storage capacities and computational capabilities of
each device make byte-level consistency not only difficult to
achieve, but also undesirable from a usability perspective.
For example, a full-page document in Portable Document
Format (PDF) is harder to read on a mobile phone because
of the increased scrolling necessitated by the small screen.
However, a plain-text version of the same document with
font sizes and line-wraps more suited to a small screen is
easier to read. Much research has been done on transcoding
web content to make it available in other platforms [3]. Even
commercial applications, like web browsers, support some
form of transcoding of content to support mobile phones,
e.g. Opera, include special rendering modes that reformat the
content to better suit the physical form factor of the device
they run on.

D. Implicit Assumption that All Data is Contained in Files

Another shortcoming of current operating systems and ap-
plication software is their emphasis on treating all of a user’s
data as files. As Barreau et al. [4] stress, considering a user’s
data as consisting of just files is to take a very narrow look at
the data. One should be able to migrate data without having
to save to a file first. However, we are not aware of any
frameworks that allow such rich treatment of users’ data.

III. R ELATED WORK

A few studies have tried to address the problem of migrating
tasks or applications over multiple platforms; most of them
have focused primarily on the technological aspects of this
problem. For example, Chuet al. take the approach of mi-
grating an entire application to support seamless task roaming
[5]. However, their approach has considerable latency during
migration (interrupting the user’s tasks sequence) and does not
discuss the implications on the user’s tasks and goals. Simi-
larly, Bandelloni and Paternò [6] talk about user interaction
with an application while moving from one device to another.
Chhatpar and Ṕerez-Quĩnones [7] call this migration “dialogue
mobility”.

Barreauet al. [4], in their seminal study on users’ perception
of files and file systems, concluded that users do not always
think of their data in terms of a hierarchical structure. Often,
the data need not be associated with a file on disk and could
be temporary. They classify users’ data asephemeral, working
and archived data [4]. Ephemeral information has a short
shelf life that is usually “loosely” filed. Working information
is frequently-used information that is directly relevant to the
task at hand. Archived information is infrequently-accessed
information which usually represents completed work.

There are standard protocols for transferring files of various
encodings over networks, e.g. MIME [8]. However, all such
approaches deal specifically with files. Nelsonet al. [9]

Voice Mail

PDF to HTML
HT
ML

HTML to TXT

Version Tracker

Recent EventsMulti-Year Calendar
Filter:

April 2006 and Later

The position
of the|cursor
can be
preserved.

Document

Voice Mail

Scroll Position

Document

The position
of the|cursor
can be
preserved.

Filter:
All Unheard Messages

OpenDocument to HTML

Example Filter:
Text Summarizer

Example Transcoder:
Voice to Email

Components within dotted-line boxes are examples available for use,
but not actually used in the four specific instances shown.

Fig. 1. The Syncables Framework

describe an approach that deals with digital library objects
instead of files; however, this approach does not provide any
translation or filtering services and is not designed for use in
a multi-platform context. Other works such as SODA [10],
Fedora [11], and CNRI [12] are essentially architectures and
frameworks to allow the extensibility of document behaviors.
The focus of all these works is primarily on portability of
content, and diversity and complexity of rendition across them.
None of these efforts focus on migrating the intra-task context
to help mitigate the disruptive effects of task disconnects.

IV. A RCHITECTURE AND IMPLEMENTATION

The following sections describe the architecture of our
Syncables system. The Syncables framework allows the syn-
chronization of arbitrary objects, which are not necessarily
files. The needs of every multi-platform application are dif-
ferent; thus, a one-size-fits-all solution is seldom appropriate.
Including support for every possible scenario in a closely-
coupled framework results in a code base that has high
memory footprint and low adaptability. Instead, we take a
different approach, where the framework provides a few basic
services and the ability for applications to compose them
together. Standard filters and transcoders are provided, and
applications may extend the framework by defining their
own synchronizable data types, data filters, and transcoders
for various formats. This also addresses concerns of limited
storage space and memory on portable devices such as PDAs
and cellphones.

A. User-Defined Information Clusters

Our framework allows users to define and organize their in-
formation in terms of an information clusters. An information
cluster is a grouping of their personal devices and the data
there contained under a unifying logical organization. Some
examples of information clusters can be found in IV-D.2.

B. Support for Collections

It is often necessary to synchronize only specific, well-
demarcated parts of one’s information cluster among devices.
For example, a user may want all the information related to a
particular project (files, email messages and bookmarks) to be
synchronized between home and work machines, but prevent
personal financial data from being shared with other machines.
We refer to each such grouping of information objects as a
‘collection’.

The concept of collections helps bring together assorted data
types such as files and email messages into a single hierarchy
grouped by project, thus mitigating the problem of information
fragmentation [13] and multiple redundant hierarchies [14].
We expect this approach to make it easier to manage personal
information across a user’s many devices.

C. Syncable Objects

A collection is composed of Syncable objects. A type of
Syncable object is defined by each software application that
wants to use the framework. Examples of Syncable object
types include files, calendar events, music, email messages,
notes, bookmarks, contact information, etc. A Syncable object
must have three basic properties:

• Name: Each syncable object must be identified with a
name. The fully-qualified name of the object, formatted
as a URI, must be unique. The fully-qualified name is
described in section IV-D.

• OutputStream: Whenever the data belonging to a Synca-
ble object needs to be updated, the framework will write it
to anOutputStream defined by the object. The object
is responsible for determining where the data is finally
written to. For example, aFile Syncable object would
pipe the received data to a disk, while aCalendar
object would update the data in the user’s calendaring
program.

• InputStream: Similarly, the framework will read data
from the object via anInputStream . The Syncables
framework can only access data through this abstract
stream; it is not aware of the physical source of the data,
which makes the framework very generic.

These are the only three properties required of an object to
enable synchronization using our framework.

D. Naming Scheme

When a unit of data is migrated among various devices, the
exact location of that data should be device-independent and
transparent to the user. In other words, whenever a request is
made for that data by any application, it need not specifically
state what device it is to be fetched from. The other primary

motivation for such a naming scheme is the fact that each
operating system or platform has its own conventions for
naming archived files and where they are stored, while there
is a conspicuous lack of naming conventions for working
data or ephemeral data. With Syncables, our aim was to
name each task information object uniquely across platforms,
thus letting applications on different platforms share common
ground about the data they work with.

Identification of a syncable object is via a Uniform Resource
Identifier (URI) [15]. Each such syncable is assigned a URI
that consists of five main parts, as illustrated in the example
below:

sync:// <info-cluster-id> / <collection> /
<type> / <path> / <object-name>

1) Information Cluster ID: Each information cluster is
identified by a Globally Unique IDentifier (GUID), a 128-bit
number that is generated by an algorithm that minimizes the
chances of any two of them being the same. Using a Cluster
ID as part of the name of a syncable object makes it possible
to use the same name for that object on all devices within
the cluster. The framework (or, more specifically, the syncable
type definitions) will take care of translating between local
names and the syncable URI, just like a web server translates
between disk paths and Web URLs.

2) Collection Name:This is simply a user-defined name
given to the collection that the object is a part of. Typical
examples include “Project X”, or “Finances”. It is worth re-
stating that a collection can include information from multiple
applications. For example, “Project X” would include files,
calendar dates, emails, bookmarks, etc.

3) Syncable Type:This is a string that indicates the type
of syncable object. Types are defined by each application that
uses the Syncables framework. Examples include:File or a
Calendar or a Note .

4) Path: The rest of the path is defined by the syncable
type definition, and thus may be arbitrary. The examples below
illustrate the genericity of the path that is possible.

5) Object Name:The specific object name is also assigned
by the type, and the application treats that part of the URI as
completely opaque.

Here are a few examples of syncable object names:

• sync:// <info-cluster-id >/IEEE-Portables

/File/Research/Papers/Syncables.tex

This is a syncable object of typeFile, in the collection
IEEE-Portables, with the rest of the path consistent with the
underlying disk path.

• sync:// <info-cluster-id >/IEEE-Portable

/Email/Perez/Draft/3

This is an object of typeEmail, belonging to the same
collection as above,IEEE-Portable, included in the same
hierarchy for easy retrieval.

• sync:// <info-cluster-id >/IEEE-Portable

/Calendar/2006/09/01/Meeting-With-Manuel

A Calendarevent is part of the same project.

• sync:// <info-cluster-id >/IEEE-Portable

/Note/Phone/Reminders

Notes and other non-file objects can be easily accommo-
dated by our framework.

E. Version Tracking

Any system that deals with data migration must address
issues related to synchronization of data. A requirement for au-
tomatic synchronization is a mechanism for detecting version
information for all the objects involved. Version information
is tracked by aVersion Trackercomponent for each type
of object. Versions are expressed simply as timestamps in
ISO 8601 format. This makes them easily sortable, and the
timestamp provides a deterministic way of detecting the latest
version. Each syncable object also records the last version
that it was edited from, making it easier to spot situations
where two or more copies of the same object may have been
concurrently edited (without having been synchronized first).
In such cases, the framework requests user intervention to
resolve the conflicting edits.

The framework can query the version tracker, for example,
for “a list of all objects modified since 2006-02-04”, to which
the version tracker object returns a list of URIs. The applica-
tion can then decide how it wants to act on the information
thus obtained – it can choose to synchronize all the changes,
or synchronize some, or defer the synchronization entirely.

The important issue of out-of-sync clocks between the
synchronizing devices is handled by first synchronizing the
individual clocks using the Network Time Protocol (NTP). If
a device does not have internet connectivity, its clock may be
synchronized by the other device involved in the migration.

It is interesting to note that there is no centralized store
for version info, and each syncable type tracks versions for
all objects of its type. This makes it possible for ephemeral
data stores such as clipboard data or scroll-position context to
implement their own mechanism for controlling and notifying
the system of updates.

F. The Process of Data Migration

In our current implementation, one device in each cluster
acts as the master, and runs an HTTP server which supports
both, GET and PUT methods for bidirectional data transfer.
Information about devices in the cluster is stored locally on
each device, so they can initiate data migration. All syncable
types available for synchronization are available in a registry
(local to each device) so that the framework is aware of the
types it can and cannot handle.

A device may query the server for updates to a particular
collection, further filtered by object type. The internal mech-
anism of synchronization is extremely simple: the framework
uses theInputStream and OutputStream provided by
each object to propagate updates.

G. Enabling Transcoding and Filtering

Some data formats may only be interpreted by software that
runs on a specific operating system. In such cases, we aim to
preserve the content of the document and make it accessible on
other platforms by the process of transcoding. Transcoders for
some common formats are available as part of the framework,
and applications may define their own. Standalone transcoders
for Web content are already available [16].

Partitioning of data and functionality deals with how a pro-
gram divides what functions and what data is most appropriate
on each device. Having a desktop calendar application show
the entire month as a first view with overview information
for each day put on the screen simultaneously is reasonable.
On a cell phone, it is more appropriate to show only today’s
activities. Filtering is needed when attempting to migrate
task information across platforms with different capacities
and architectures. In such a case, data may be filtered for
appropriateness by means of predefined or application-defined
filters.

We use the HTTP HeaderAccept: to indicate the format
in which the destination requests content. When a request is
made with anAccept: header that is different from the
source data type, the framework locates a transcoder from
a registry of available transcoders, and pipes the content of
the outgoing stream through the transcoder. Since filtering of
objects is dependent on the specific type, the framework relies
on the type definition to determine if filtering should take
place, and the parameters for the filter. For example, a request
for calendar items that ends in/2006/05/ might represent
an implicit requestto filter calendar events to the month of
May 2006.

V. EXAMPLES OF USAGE SCENARIOS OF THESYNCABLES

FRAMEWORK

In Figure 1, we show four examples of the Syncables
framework being used for data migration. The first is a simple
migration of files between a desktop and a PDA; transcoding
is automatically performed for those file types that the PDA
cannot display in their native format. In the second example, a
desktop calendar is migrated to a cellphone, filtered to events
since April 2006. Other filters may include automatic text
summarizers for long passages. The third example is used to
migrate all unheard voice messages from a corporate telephony
system to a user’s email inbox. A filter excludes all messages
that have already been listened to. Transcoding could be used
at this step to convert voice to text. The last example shows
how application context information can be migrated across
devices with dissimilar form factors and applications – in this
case, the current scroll position and cursor position are made
available to the second device which helps bridge the task
disconnect.

VI. FUTURE WORK

We are currently creating many more Syncable object defini-
tions, such as the ability to capture and relay information about
running applications, documents, and contextual information

about these applications. We intend to evaluate the framework
from two perspectives: users’ perspective and developers’
perspective. In addition to satisfying our user goals, the
framework must also be easy to use for developers. Since the
usefulness of such a tool can only be gauged by repeated,
frequent use in a mobile setting, we plan to conduct a longer-
term field trial by inviting participants to try it for a significant
amount of time. Information gathered from interviews and data
collected from system logs can help us determine whether the
framework represents a significant step towards bridging task
disconnects.

In cases where only a small part of a large object has
undergone changes, it is wasteful of network bandwidth to
transfer the entire data again. We plan to use thersync
protocol which optimizes this transfer by sending only the
changed bytes (plus some overhead) over the network.

In a future version, we aim to remove the requirement for
one machine to act as the master. Instead, we plan to make
data migration possible between any two devices in a user’s
information cluster.

VII. C ONCLUSION

In this paper, we described the design goals and architecture
of a framework for supporting seamless task migration across
multiple platforms. The Syncables system is designed to work
with multiple types of data that need not necessarily be saved
to disk first, and also allows task information such as scroll
position and other application context to be migrated from
one platform to another. Recognizing that multiple platforms
are often of varying form factors, the Syncables architecture
allows complete extensibility for applications to create and
compose filters and transcoders according to the needs of the
specific application.

REFERENCES

[1] W. Jones, H. Bruce, and S. Dumais, “Keeping found things found on the
web,” in CIKM ’01: Proceedings of the tenth international conference
on Information and knowledge management. New York, NY, USA:
ACM Press, 2001, pp. 119–126.

[2] P. S. Pyla, M. Tungare, and M. Pérez-Quĩnones, “Multiple User Inter-
faces: Why Consistency is Not Everything, and Seamless Task Migration
is Key.” in Proceedings of the CHI 2006 Workshop on The Many Faces
of Consistency in Cross-Platform Design., 2006.

[3] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and T. Winograd,
“Power browser: Efficient web browsing for pdas,” inSIGCHI con-
ference on Human factors in computing systems, The Hague, The
Netherlands, 2000, pp. 430–437.

[4] D. Barreau and B. A. Nardi, “Finding and reminding: file organization
from the desktop,”SIGCHI Bull., vol. 27, no. 3, pp. 39–43, 1995.

[5] H.-h. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, “Roam,
a seamless application framework,”Journal of Systems and Software,
vol. 69, no. 3, pp. 209–226, 2004.

[6] R. Bandelloni and F. Paternò, “Flexible Interface Migration,” inIUI
’04: Proceedings of the 9th international conference on Intelligent user
interface. New York, NY, USA: ACM Press, 2004, pp. 148–155.

[7] C. Chhatpar and M. Ṕerez-Quĩnones, “Dialogue mobility across de-
vices,” in ACM Southeast Conference (ACMSE), Savannah, Georgia,
2003.

[8] N. Freed and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME),” http://www.ietf.org/rfc/rfc2045.txt, 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc2045.txt

[9] M. L. Nelson and K. Maly, “Buckets: Smart objects for digital libraries,”
Commun. ACM, vol. 44, no. 5, pp. 60–62, 2001.

[10] M. L. Nelson, K. Maly, D. R. Croom Jr., and S. W. Robbins, “Metadata
and Buckets in the Smart Object, Dumb Archive (SODA) Model,” in
Third IEEE Meta-Data Conference, 1999.

[11] S. Payette and C. Lagoze, “Flexible and Extensible Digital Object and
Repository Architecture (FEDORA),” inSecond European Conference
on Research and Advanced Technology for Digital Libraries, Heraklion,
Crete, 1998.

[12] W. Y. Arms, C. Blanchi, and E. A. Overly, “An architecture for
information in digital libraries,”D-Lib Magazine, February 1997.

[13] O. Bergman, R. Beyth-Marom, and R. Nachmias, “The project frag-
mentation problem in personal information management,” inCHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing
systems. New York, NY, USA: ACM Press, 2006, pp. 271–274.

[14] R. Boardman, R. Spence, and M. A. Sasse, “Too many hierarchies?: The
daily struggle for control of the workspace,” inProc. HCI International
2003, 2003.

[15] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource
Identifiers (URI): Generic Syntax,” http://www.ietf.org/rfc/rfc2396.txt,
August 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2396.txt

[16] Z. Shao, R. Capra, and M. A. Pérez-Quĩnones, “Transcoding HTML to
VoiceXML using annotation,” inProceedings. 15th IEEE International
Conference on Tools with Artificial Intelligence, 2003., 2003, pp. 249–
258.

