
Towards a Syllabus Repository for Computer Science
Courses

Manas Tungare, Xiaoyan Yu, William Cameron, GuoFang Teng,
Manuel A. Pérez-Quiñones, Lillian Cassel, Weiguo Fan, Edward A. Fox

Virginia Tech and Villanova University

{manas, xiaoyany, perez, wfan, fox}@vt.edu,
{william.cameron, guofang.teng, lillian.cassel}@villanova.edu

ABSTRACT
A syllabus defines the contents of a course, as well as other in-
formation such as resources and assignments. In this paper, we
report on our work towards creating a syllabus repository of Com-
puter Science courses across universities in the USA. We present
some statistics from our initial collection of 8000+ syllabi. We
show a syllabus creator that is integrated with Moodle [5], an open-
source course management system, which allows for the creation
of a syllabus for a particular course. Among other information,
it includes knowledge units from the Computing Curricula 2001
body of knowledge. The goal of the syllabus repository is to pro-
vide added value to the Computer Science Education community,
and we present some such offerings. We conclude by presenting
our future plans for the syllabus repository. These include using
automated techniques to collect and classify syllabi, providing rec-
ommendations to instructors when creating a syllabus, and allow-
ing the community to share their syllabi automatically. The syl-
labus collection will be part of the Computing and Information
Technology Interactive Digital Educational Library (CITIDEL), a
collection of the National Science Digital Library (NSDL).

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous

Keywords
Syllabus, Curriculum, Computing Curricula 2001

1. INTRODUCTION
A syllabus forms the backbone of a course offering: a complete

syllabus typically includes the course number, title, a description,
the learning objectives of the course, a list of the topics covered,
links to reference material such as books or publications, and other
related information. The various learning objects that are included
in a course offering are created based on the syllabus definition, and
are tightly integrated with the reference material (also included in
the syllabus).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE 2007Covington, Kentucky, USA.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Thus, knowledge of a course syllabus can be used to assess the
structure of a course, the exact knowledge units covered, and the
relative time devoted to each of them. The syllabus describes how
individual learning objects are combined to form larger entities and
packaged as a course for students.

We are in the process of creating a repository of Computer Sci-
ence syllabi. The first generation of this collection is composed
of syllabi collected from the Web. We also have created tools that
allow professors to create a syllabus and automatically publish it
to our collection. We plan to use our collection to provide rec-
ommendations to course creators (e.g., by suggesting a textbook
to use for a particular course) and to provide other services to the
Computer Science Education community. The collection of syllabi
will be part of the Computing and Information Technology Inter-
active Digital Educational Library (CITIDEL), a collection of the
National Science Digital Library (NSDL).

In this paper, we discuss our approach to collect the initial syllabi
in our repository, tools to help create new course syllabi, tools to
compare existing syllabi, and future plans for our collection.

2. CREATING THE COLLECTION
In order to reap the larger advantages of a syllabus repository,

a sizable collection of syllabus documents must first be available.
However, populating an empty syllabus repository with enough syl-
labi within a small frame of time would be a monumental task.
Professors are more likely to continue publishing their syllabi over
the Web as HTML or PDF documents instead of sharing them in
a common repository. Including just a few syllabi in a collection
would likely not provide enough return over the effort invested in
sharing the syllabi. Thus, given the extensive availability of syllabi
as published Web documents, we decided to gather them automati-
cally.

We used Google to locate documents that show a high likelihood
of being a syllabus. This was accomplished by two specialized
sets of queries submitted to Google’s search engine: the first, to
locate departments of interest within an educational institution, and
second, to locate syllabi within that department. Since our current
interest is in accumulating syllabi in the field of Computer Science,
we issued a query for

“computer science site:edu ”

The result of this query was a list of pages within the computer
science departments of many US university websites (i.e., those
whose domain names end with ‘.edu ’). We processed each re-
sulting URL to obtain the relevant domain name, i.e., the homepage
of each department. The resulting set of departments included 98
Computer Science departments (e.g.,cs.vt.edu). We then

Full Syllabus Partial Syllabus Entry Point Noise

F
e
a
tu

re
s
 f

o
u
n
d
 i
n
 %

 o
f

d
o
c
u
m

e
n
ts

0

10

20

30

40

50

60

70

80

90

100

Features in Syllabi

Legend

SyllabusInBodyGrading

PolicyPrerequisiteCourseDescription

ExamAssignmentDepartment

HasLinksCourseCodeInstructor

SyllabusInURLTeachingAssistantTopicSchedule

CourseObjectivesTextbookSyllabusInLink

Figure 1: Features found in Syllabus Documents

issued the second set of queries, one per department, to locate doc-
uments within that department. As an illustration, the following
query resulted in a list of syllabus-like documents from the De-
partment of Computer Science at Virginia Tech that exhibit high
likelihood of being a syllabus.

“syllabus site:cs.vt.edu ”

The syllabus documents thus obtained were stored in a structured
organization (for later retrieval), and converted from their native
format (either PDF, PS, or HTML) to plain text to enable further
text processing. The result of our initial crawl produced 8000+
syllabi.

We plan to extend our document collection strategies to include
academic institutions from around the world (non-.edu Web sites),
and departments named, for example, ‘Computing Sciences’ or
‘School of Information Sciences’. We plan to update this collec-
tion several times a year, since it is likely that syllabi are posted
and revised in accordance with academic calendars.

2.1 Statistics About the Syllabi We Found
The inclusion of a page within Google’s search results is not a

definitive indicator that a particular webpage is a syllabus. From
a quick scan of the documents retrieved, we identified four cate-
gories of documents: a full syllabus, a partial syllabus, a syllabus
entry point, and noise. A full syllabus is one that contains most of
the basic syllabus components and no links to other related docu-
ments. A partial syllabus contains some important syllabus compo-
nents along with links to other components on another web page.

Figure 2: SyllabusMaker, a plug-in for Moodle.

A syllabus entry page (for example, a course web site home page)
contains a link to a syllabus, or to the various pieces that make
up a complete syllabus. The rest of the documents are considered
noise. These often are web pages where the keyword ‘syllabus’ oc-
curs several times, such as articles about how to write a syllabus,
discussion fora, or published exams.

We manually classified a small set (1000) of the 8000+ syllabi
into the four categories. We defined 17 features normally found in
a course syllabus (e.g., course name, learning objectives, textbook,
etc.) as shown in the legend area of Figure 1. We then extracted
them from this smaller set using pattern-matching techniques. Fig-
ure 1 shows the frequency of occurence of the defined features. It
can be seen that the presence of some features is a strong indicator
of a document belonging to one of the four categories. For exam-
ple, from a 2-sample t-test, a syllabus hyperlink (i.e., the keyword
‘syllabus’ appearing in the hyperlinked URL or in the anchor text)
appears statistically significant (α = .05) more in a entry page than
in any other kind of documents.

2.2 Updating the Syllabus Collection
At the start of each new academic term (semester or quarter),

syllabi are often updated to reflect new course offerings or changes
to existing ones. An effective method for capturing these updates is
necessary to maintain a fresh index of syllabi within the repository.
We plan to have an automated classifier so that new results from
our web crawl will be automatically processed.

With the information learned from the manual classification, we
then can build an automatic classifier that will allow us to quickly
identify a full syllabus versus a web document that simply con-
tains a mention of a syllabus. The 1000 documents classified are a
random subset of our larger syllabus collection. The size of 1000 is
large enough to design and train a syllabus classifier for future auto-
matic syllabus identification purposes. With the extracted features
and the 1000 documents as a training set, we can train a syllabus
classifier using a machine learning approach such as the decision
tree algorithm [4], support vector machines [11], or naı̈ve Bayes
methods [4].

3. TOOLS
We are currently loading our syllabus collection into DSpace [1]

so that users can navigate to and contribute to the collection in a
seamless way. However, having the repository in a centralized col-
lection is hardly enough to encourage the use of this information.

Figure 3: Adding Knowledge Units from CC 2001 to a Syllabus

We have created several tools that, together with the repository, rep-
resent a suite of tools and data to support the creation, modification,
and use of the knowledge captured in the syllabus repository.

3.1 SyllabusMaker
One of our tools is the SyllabusMaker. This tool helps create a

syllabus and supports the collection of meta-data which will auto-
matically be shared with our central repository. Our initial version
of SyllabusMaker is in the form of a plug-in to Moodle [5], an
open-source course management system (CMS). With this plug-in,
instructors can create their own syllabus and share it, if they so
desire, with our syllabus repository. A screenshot of one of the
dialogs within SyllabusMaker is shown in Figure 2.

By providing a tool like SyllabusMaker embedded in a CMS, we
support the instructors in the creation of syllabi, we collect meta-
data right at the point of creation, and it allows us to provide added
value to the course creation process (more about this later in the
paper). Initially, our tool is only available in Moodle, but we are
planning to port it to Sakai [8], another open-source CMS. We also
have plans to create a stand-alone syllabus creation tool that will be
available on the Web.

3.2 Linking to the CC 2001 Body of Knowl-
edge

What is unique about our syllabus tools is that they allow con-
nections to curriculum schemas. In the case of Computer Science,
an instructor can select a series of topics from the CC 2001 body of
knowledge [7] that are covered in the course.

The Computing Curricula Project [7] (CC 2001) was undertaken
to develop guidelines for computing curricula at an undergraduate
level. In its final report, the authors present detailed coverage of
the CS body of knowledge, core areas for undergraduate studies,
learning objectives and curriculum models. In particular, the re-
port recommends the number of hours to be devoted to particular
knowledge units for courses with specified learning objectives as a
guideline to instructors preparing a course. This data can be of use
to instructors when creating a syllabus, either to design their course

based entirely on CC 2001 recommendations, or to pick the right
mix of knowledge units, given their unique goals for a particular
course.

Our tool provides instructors the option to select knowledge units
(KU) from CC 2001 to ‘tag’ a particular syllabus. This would al-
low instructors creating courses to use the content and knowledge
included in the CC 2001 at course creation time. SyllabusMaker
includes a browser for the CC 2001 knowledge units and brief de-
scriptions for each unit to ease the creation of syllabi. Clicking the
button labeled‘Add CC 2001 Knowledge Units’in Figure 2 opens
the KU browser, shown in Figure 3. From there, the instructor can
select the set of KUs desired and include them in the syllabus.

3.3 Syllabus Comparison Tool
With a complete definition of syllabi available, it is easy to visu-

alize the distribution of topics (or Knowledge Units from CC 2001)
across a series of related courses. The topics included in a course
can easily be used to compare two different courses and get a sense
of if they are similar or not, based solely on the matching of KUs
covered in them.

Figure 4 shows our Syllabus Comparison Tool with two syllabi
loaded for comparison. The list of knowledge units down the left
side of the screen is the union of all the knowledge units covered
in the courses shown across the top. Our tool allows comparing an
arbitrary number of courses, although practically it is most appro-
priate when comparing a small number of courses. In this example,
the interface clearly shows how the two courses compare; the User
Interface Software course covers more implementation issues (e.g.,
HC2, HC5, HC6) than the Introduction to HCI course. Though it
currently works only with syllabi built with our SyllabusMaker, we
plan to extend it to compare any syllabi from our repository.

This comparison mechanism can be used as a similarity score.
Users of our tools could easily look for syllabi that are “similar” to
their own courses. This will enable future tools to provide recom-
mendations of other similar syllabi to instructors, as well as recom-
mendations for textbooks, topics to discuss, etc. obtained from the
set of other similar syllabi.

Figure 4: Comparing Two Syllabi Using CC 2001 Knowledge
Units

3.4 Syllabus Search Engine
A syllabus repository can provide a course creator or student ad-

ditional reference material from similar courses, but it may be dif-
ficult to find links between dissimilar courses. A full-text search
on the contents of collected syllabi makes it easy to issue keyword
queries that span the entire corpus, and thus locate hard-to-find ref-
erences. Our search engine queries the text extracted from syllabi
collected from the Web, as well as those entered via SyllabusMaker.

4. USES OF A SYLLABUS REPOSITORY
Availability of a syllabus repository opens up possibilities for

many innovative applications. We describe a few of them in the re-
mainder of this paper. We expect that the presence and easy access
to a syllabus collection will almost certainly lead to new creative
ways of using this information.

4.1 Assisting Instructors when Creating New
Syllabi

When an instructor creates a new syllabus, there is a high likeli-
hood of the end-product being similar to other syllabi (or perhaps
a combination of two or more syllabi). Although the similarity be-
tween two syllabi at the same institution is likely to be minimal, the
availability of syllabi from other institutions increases the chances
of finding a match. Recommendations can be made to the instructor
based on resources from similar syllabi to assist with one or more
of the following tasks:

• Recommending the relative number of hours to be assigned
to each knowledge unit, as per standardized syllabi classi-
fication schemes or simply based on what other courses do
with the particular knowledge unit;

• Locating books, reading material, and other resources that
similar syllabi have included;

• Enabling the instructor to import material from other syllabi
(licensed appropriately) instead of having to recreate the en-
tire syllabus involving extra effort (e.g., copy the full text
reference from another syllabus);

• Identify possible contact points to discuss and share experi-
ences in a particular course.

4.2 Comparing Computing Programs
There are bound to be subtle differences between syllabi for the

same course offered at different universities. In case of multi-
disciplinary topics such as Human-Computer Interaction (HCI), a

Theory
Curriculum

CC2001
HCI & SE

Curriculum

Syllabus
CS1

Syllabus
CS2

CC2001

Syllabus
CS1

Syllabus
CS2

Figure 5: Comparing Two Computing Programs

particular school might offer an introductory course with more em-
phasis on usability engineering processes, while another one might
devote more time to interface design principles, and a third one
might devote more time to theories and models. We could use a
collection of syllabi from a particular university and get a sense
of the emphasis given at that institution to the different sub-areas
within computing. This will be helpful to students for obtaining
better information about specific programs in computer science be-
fore enrolling in one that fits their interests more closely. In a way,
this functionality is analogous to our syllabus comparison tool, but
instead using data at the program level. A simple visualization can
show all the KUs covered in a department or school. Figure 5 shows
an example diagram depicting this idea; comparing two curricula
based on the knowledge units covered in their respective courses
provides a way to see the focus of each curriculum.

4.3 Web Service API
To encourage more innovative applications from third-party de-

velopers, we plan to offer a web service application programming
interface (API) which will let developers create tools to access and
enter data into the repository.

5. PUTTING IT ALL TOGETHER
Given a syllabus collection, our next step is to extract impor-

tant components from it such as the course title, course descrip-
tion, instructor, schedule and topics. A syllabus can be viewed as a
collection of meta-data for a course. Therefore, machine learning
approaches like support vector machines [11] and hidden Markov
models [6] (HMM) can be applied to extract this meta-data. They
have been used already to extract limited meta-data from syllabi
[9]. The goal is to obtain similar meta-data as is produced by our
SyllabusMaker, but automatically extracted from our 8000+ collec-
tion.

With the meta-data information available for course syllabi, we
will be able to recommend resources to instructors and students
automatically, based on the focus of the course. The recommenda-
tions will be done right at the CMS where instructors and students
currently interact within the context of their courses. We plan to use
techniques from genetic programming; ARRANGER (Automatic
Rendering ofRANking functions byGEnetic programming) [2] is
a user modeling tool that approximates a user’s ranking preference
based on user feedback. In other words, given a set of documents
along with their relevance information from a user, ARRANGER
can automatically tune a ranking function based on syntactic and
lexical evidence embedded in the documents and can discover a
personalized ranking function that can be used to reorder infor-
mation based on personal preferences. Combined with effective
user profiling and/or user feedback, ARRANGER can deliver even
higher quality information to end users.

It is likely that syllabi classified and parsed automatically will

Crawler

Recommender
Systems

Web Service Interface

Community
Portal

Syllabus
Comparison Tool

Syllabus Search
Engine

SyllabusMaker

Moodle
Sakai

Standalone

Syllabus
Repository

CC 2001

Figure 6: Overall Architecture of the Syllabus Repository Sys-
tem

have some errors. Most of these can be spotted by users of the
system, and leveraging the assistance of the community would be
helpful to maintain the quality of the repository. Success (to a
high degree) has been achieved in open community-based systems
in correcting structured information that was automatically parsed
by autonomous agents [3] (referred to as Distributed Error Correc-
tion).

Finally, our efforts towards producing meta-data for syllabi from
our tool and from our crawler have sparked interest in creating a
standard representation for syllabi. No such standard exists today.
Our group is leading the effort to define and use such a standard.
The advantages of having a standard go beyond our initial set of
tools and can have implications for other disciplines. More on the
standard representation is discussed elsewhere [10].

6. CONCLUSIONS
In this paper we have presented our initial work on creating a

collection of Computer Science course syllabi and our work to cre-
ate tools to support the use of such a collection. Our field, more
than most other sciences, changes rapidly. This brings in pressure
from industry, students, and university administrators to update syl-
labi and curricula. For us to effectively manage our curricula and
courses, we need tools like the ones we have presented here. They
allow us to directly manipulate the knowledge embedded in course
syllabi and to use and reuse them as a point of collaboration among
the Computer Science faculty and other constituents.

A syllabus is an entry point to learning materials, presentations,
readings, and other content. Having the connections from these

learning objects to syllabi will allow us to better understand where
and when supplemental materials can be used best. For example,
an animation depicting sorting for an introductory course in CS
needs to show different parameters than a similar animation for an
advanced class in algorithms. Simply finding the animation is not
sufficient to know if it is appropriate for an instructor’s particular
needs. But, finding a course syllabus that matches one’s own, and
through it seeing what other supplemental materials are used, can
provide a significant benefit to the community of Computer Science
professors.

7. ACKNOWLEDGMENTS
This work was funded by the National Science Foundation under

grant DUE #0532825.

8. REFERENCES
[1] DSpace. DSpace.org. http://www.dspace.org/, Last

Accessed: March 2006.
[2] W. Fan, E. A. Fox, P. Pathak, and H. Wu. The effects of

fitness functions on genetic programming-based ranking
discovery for web search: Research articles.Journal of the
American Society for Information Science and Technology,
55(7):628–636, 2004.

[3] S. Lawrence, K. Bollacker, and C. L. Giles. Distributed error
correction. InDL ’99: Proceedings of the Fourth ACM
Conference on Digital Libraries, page 232, New York, NY,
USA, 1999. ACM Press.

[4] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[5] Moodle. Moodle - a free, open source course management

system for online learning. http://www.moodle.org/, Last
Accessed September 2006.

[6] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. pages 267–296,
1990.

[7] The Joint Task Force on Computing Curricula. Computing
Curricula 2001.Journal on Educational Resources in
Computing (JERIC), 1(3es):1, 2001.

[8] The Sakai Project. Sakai: Collaboration and learning
environment for education. http://www.sakaiproject.org/,
Last Accessed September 2006.

[9] C. A. Thompson, J. Smarr, H. Nguyen, and C. Manning.
Finding educational resources on the web: Exploiting
automatic extraction of metadata. InProc. ECML Workshop
on Adaptive Text Extraction and Mining, 2003.

[10] M. Tungare, X. Yu, G. Teng, M. Ṕerez-Quĩnones, E. Fox,
W. Fan, and L. Cassel. Towards a standardized representation
of syllabi to facilitate sharing and personalization of digital
library content. InProceedings of the 4th International
Workshop on Applications of Semantic Web Technologies for
E-Learning (SW-EL), 2006.

[11] V. N. Vapnik.The Nature of Statistical Learning Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

